
CUDIMOT is a toolbox, part of FSL (FMRIB Software Library), for designing and implementing MRI nonlinear models on Graphics Processing Units (GPUs).
The toolbox includes:
The only required libraries are FSL (FMRIB Software Library) and CUDA toolkit. You will need an NVIDIA GPU.*
If you want to use the toolbox for implementing your own models you can download it here:
CUDIMOT variable
with that path - for instance: export CUDIMOT=/home/moises/CUDIMOTNODDI_Watson file for your CUDA versionNODDI_Watson fileNODDI_Watson/bin/* directory to your $CUDIMOT/bin/* directory$CUDIMOT/bin/Pipeline_NODDI_Watson.sh [SubjectDirectory]FSLGECUDAQ environment variable).SGE_ROOT should be unset: unset SGE_ROOT-NJOBS X to create X different GPUs jobs, each one for processing
a subpart of the dataset (this option can process the dataset very fast)$FSLDIR/lib and the Cuda 12 libraries must be in LD_LIBRARY_PATHNODDI_Bingham binaries and scripts:NODDI_Watson, but using NODDI_Bingham files$CUDIMOT/bin/Pipeline_NODDI_Bingham.sh [SubjectDirectory]See separate page for information on how to use the tool for implementing your own model.
Also see information on fitting your model and debugging cuDIMOT
If you use cuDIMOT in publications, please cite this paper:
Hernandez-Fernandez M., Reguly I., Jbabdi S, Giles M, Smith S., Sotiropoulos S.N. “Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes.” NeuroImage 188 (2019): 598-615.